Structure of Iodo(methylthiomethylphenyl)bis(triphenylphosphine)palladium(II)

By Elly van der Voort, Paul van der Sluis and Anthony L. Spek*
Vakgroep Algemene Chemie, Afdeling Kristal- en Structuurchemie, Padualaan 8, 3508 TB Utrecht, The Netherlands

(Received 2 July 1986; accepted 21 October 1986)

Abstract

PdI}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right\}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~S}\right)\right], \quad M_{r}=895 \cdot 12\), monoclinic, $P 2_{1} / c, a=14.805$ (2), $b=11.070$ (3), c $=24.444$ (4) $\AA, \quad \beta=104.96(1)^{\circ}, \quad V=3870(1) \AA^{3}, Z$ $=4, \quad D_{m}=1.52, \quad D_{x}=1.536 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=$ $0.71073 \AA, \mu=14.2 \mathrm{~cm}^{-1}, F(000)=1792, T=295 \mathrm{~K}$, $R=0.0381$ for 3802 observed reflections with $I>$ $2 \cdot 5 \sigma(I)$. The Pd atom is coordinated in a square-planar fashion by two triphenylphosphine ligands, an iodine atom and a methylthiomethylphenyl group. The triphenylphosphine ligands are in trans positions. No short non-bonding interactions between Pd and S are observed.

Introduction. In the course of research into the cross-coupling reaction (Negishi, 1978) catalyzed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, we isolated an intermediate $\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{-}\right.$ $\left.\mathrm{SCH}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{I}$ by reacting the organic halide [o$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{SCH}_{3}\right) \mathrm{II}$ with excess of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$. We undertook this X-ray analysis to find out whether the coordination geometry about the Pd atom is squareplanar or square-based pyramidal with an intramolecularly coordinated S atom in apical position.

Experimental. Crystals obtained by the vapour diffusion method, with dichloromethane as solvent and diethyl ether as precipitant. The crystal selected for study was a block-shaped yellow fragment ($0.50 \times$ $0.13 \times 0.06 \mathrm{~mm}$) cleaved from a twinned specimen and mounted on a glass fibre. D_{m} by flotation. EnrafNonius CAD-4F diffractometer was used for data collection. Unit-cell parameters and the orientation matrix were determined from the setting angles of 25 reflections ($10<\theta<11^{\circ}$). Unique dataset: 5374 reflections: $h 0,16 ; k 12,0 ; l-25,26 ; 1.43<\theta<23^{\circ} ; \omega / 2 \theta$ scan; Zr-filtered Mo $K \alpha$ radiation. Three reference reflections ($200,0 \overline{2} 0,002$) measured every hour showed no decay during 86 h exposure time, variation $<2 \%$. The diffraction data were corrected for Lorentz and polarization effects. The standard deviation $\sigma(I)$ was calculated following McCandlish, Stout \& Andrews (1975); $\sigma^{2}(I)=\sigma^{2}(I)_{\mathrm{cs}}+(P I)^{2}, P=0.02$.
The Pd and I atoms were located in a Patterson map and the remaining non-hydrogen atoms were obtained

[^0]by standard difference Fourier techniques. Correction for absorption was carried out with the program DIFABS (Walker \& Stuart, 1983). Minimum and maximum absorption corrections 0.888 and 1.071 . H atoms were placed on calculated positions. The H atoms of the methyl group were refined in the riding mode on their neighbouring C atom with one overall isotropic parameter. The positional and thermal parameters of the remaining hydrogen atoms were refined individually. The non-hydrogen atoms were refined with anisotropic thermal parameters. Weights were introduced. Final atomic parameters are given in Table $1 . \dagger$

The structure was refined on F by blocked full-matrix least-squares techniques converging to a final R value of $0.0381 ; w R=0.0319 ; w^{-1}=\sigma^{2}(F) ; S=2.53 ; 3802$ observed reflections with $I>2.5 \sigma(I) ; 614$ parameters; $\langle\Delta / \sigma\rangle=0 \cdot 1$; residual density in the final difference Fourier map -0.72 and $0.78 \mathrm{e}^{\AA^{-3}}$.

Scattering factors of Cromer \& Mann (1968) were used. Anomalous-dispersion terms were taken from Cromer \& Liberman (1970). The calculations were carried out on either the CDC Cyber-855 of the University of Utrecht with SHELX76 (Sheldrick, 1976) and EUCLID (Spek, 1982) or a local Eclipse S/230 minicomputer with an adapted version of SHELX76.

Discussion. Selected interatomic distances, bond angles and torsion angles and their estimated standard deviations are presented in Table 2. The labelling scheme and the molecular geometry are illustrated in Fig. 1.

The monoclinic unit cell contains four molecules of the title compound. The structure consist of a central palladium(II) atom bonded to two triphenylphosphine ligands, an iodide ion and a 2-methylthiomethylphenyl moiety. There are no abnormally short intermolecular contacts. The coordination geometry about the Pd

[^1]Table 1. Final positional parameters for the nonhydrogen atoms and equivalent isotropic temperature factors with e.s.d.'s in parentheses

$U_{\mathrm{eq}}=\frac{1}{3}\left(\sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}\right)$.				
	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
I	0.42167 (3)	0.36763 (4)	0.24388 (2)	0.0457 (1)
Pd	0.28515 (3)	0.51928 (4)	0.25468 (2)	0.0324 (2)
S	0.2292 (2)	0.9449 (2)	0.2328 (1)	0.0951 (8)
P (1)	0.3355 (1)	$0 \cdot 5050$ (1)	0.35286 (6)	0.0354 (5)
$\mathrm{P}(2)$	0.2315 (1)	0.5439 (1)	0.15657 (6)	0.0349 (5)
C(1)	$0 \cdot 4620$ (4)	0.5136 (5)	0.3794 (2)	0.036 (2)
C(2)	0.5130 (4)	0.4410 (6)	0.4219 (2)	0.048 (2)
C(3)	0.6094 (5)	0.4552 (7)	0.4406 (3)	0.060 (2)
C(4)	$0 \cdot 6536$ (5)	0.5432 (7)	0.4186 (3)	0.064 (2)
C(5)	0.6036 (5)	0.6185 (7)	0.3776 (3)	0.061 (2)
C(6)	0.5083 (4)	$0 \cdot 6020$ (6)	0.3571 (2)	0.051 (2)
C(7)	0.2975 (4)	0.3647 (5)	0.3783 (2)	0.041 (2)
C(8)	0.2609 (4)	0.2722 (6)	0.3422 (3)	0.055 (2)
C(9)	0.2308 (5)	$0 \cdot 1656$ (7)	0.3615 (4)	0.078 (2)
C(10)	0.2375 (6)	0.1538 (7)	0.4177 (4)	0.085 (2)
C(11)	0.2725 (5)	0.2406 (8)	0.4541 (3)	0.081 (2)
C(12)	0.3023 (5)	0.3459 (6)	0.4354 (3)	0.060 (2)
C(13)	0.2962 (4)	0.6191 (5)	0.3958 (2)	0.040 (2)
C(14)	0.2076 (5)	0.6118 (7)	0.4043 (3)	0.061 (2)
C(15)	$0 \cdot 1759$ (5)	0.7004 (8)	0.4351 (3)	0.077 (2)
C(16)	0.2319 (6)	0.7943 (8)	0.4566 (3)	0.082 (2)
C(17)	0.3174 (6)	0.8041 (6)	0.4489 (3)	0.075 (2)
C(18)	0.3499 (5)	0.7170 (6)	0.4183 (3)	0.060 (2)
C(19)	$0 \cdot 1655$ (4)	0.4152 (5)	$0 \cdot 1196$ (2)	0.039 (2)
C(20)	$0 \cdot 1114$ (4)	0.4253 (6)	0.0648 (2)	0.053 (2)
C(21)	0.0705 (5)	0.3243 (7)	0.0362 (3)	0.062 (2)
C(22)	0.0820 (4)	0.2131 (6)	0.0615 (3)	0.060 (2)
C(23)	0.1345 (4)	0.2010 (6)	$0 \cdot 1154$ (3)	0.050 (2)
C(24)	$0 \cdot 1773$ (4)	0.3027 (5)	0.1447 (2)	0.044 (2)
C(25)	$0 \cdot 3304$ (4)	0.5567 (5)	0.1245 (2)	0.036 (2)
C(26)	0.3998 (4)	0.6409 (6)	0.1464 (2)	0.047 (2)
C(27)	0.4793 (4)	0.6469 (6)	0.1278 (3)	0.056 (2)
C(28)	0.4935 (5)	0.5662 (7)	0.0884 (3)	0.066 (2)
C(29)	0.4266 (5)	0.4816 (7)	0.0669 (3)	0.066 (2)
C(30)	0.3444 (4)	0.4760 (6)	0.0847 (2)	0.049 (2)
C(31)	$0 \cdot 1565$ (4)	0.6717 (5)	0.1279 (2)	0.038 (2)
C(32)	$0 \cdot 1810$ (4)	0.7628 (6)	0.0964 (2)	0.048 (2)
C(33)	$0 \cdot 1214$ (5)	0.8596 (6)	0.0773 (3)	0.061 (2)
C(34)	0.0371 (4)	0.8672 (6)	0.0894 (3)	0.058 (2)
C(35)	0.0105 (4)	0.7769 (7)	0.1195 (3)	0.060 (2)
C(36)	0.0685 (4)	0.6802 (6)	0.1383 (2)	0.054 (2)
C(37)	0.1732 (4)	0.6119 (5)	0.2661 (2)	0.038 (2)
C(38)	0.1710 (4)	0.7358 (5)	0.2731 (2)	0.044 (2)
C(39)	0.0923 (5)	0.7883 (6)	0.2829 (3)	0.057 (2)
C(40)	0.0163 (5)	0.7190 (8)	0.2856 (3)	0.076 (2)
C(41)	0.0184 (5)	0.5974 (7)	0.2783 (3)	0.067 (2)
C(42)	0.0959 (4)	0.5420 (6)	0.2687 (3)	0.049 (2)
C(43)	0.2549 (5)	0.8088 (6)	0.2729 (3)	0.062 (2)
C(44)	$0 \cdot 3369$ (5)	1.0203 (6)	0.2510 (3)	0.086 (2)

atom may be viewed as square-planar. The triphenylphosphine ligands are positioned trans. The S atom lies -1.09 (2) \AA away from the plane of the benzyl group to which the S atom is linked and it coordinates neither intramolecularly nor intermolecularly to the Pd atom.

The $\mathrm{Pd}-\mathrm{P}$ distances that are observed for squareplanar Pd compounds lie in the range from 2.319 through $2.342 \AA$. The $P d-P(1)$ and $P d-P(2)$ distances are 2.327 (2) and 2.339 (2) \AA respectively.

The Pd-I distance is 2.692 (1) \AA. We may compare this with $\mathrm{Pd}^{\text {II }}-\mathrm{I}$ distances of $2.651 \AA$ for μ-allyl-μ-iodobis(triphenylphosphine)palladium (Kobayashi, Iitaka \& Yamazaki, 1972), 2.647 to $2.741 \AA$ in (μ-2-iodo)bis[μ-2-bis(diphenylphosphino)methane]-
iodomethyldipalladium tetrafluoroborate (Olmstead, Farr \& Balch, 1981). The Pd-C distance in the title compound $[2.029(6) \AA$] lies in the range (1.983-

Table 2. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$
$\mathrm{I}-\mathrm{Pd}$
$\mathrm{Pd}-\mathrm{P}$ $\mathrm{Pd}-\mathrm{P}(1)$
$\mathrm{Pd}-\mathrm{P}(2)$

$1-\mathrm{Pd}-\mathrm{P}(1)$	90.58 (4)
$\mathrm{I}-\mathrm{Pd}-\mathrm{P}(2)$	92.12 (4)
$\mathrm{I}-\mathrm{Pd}-\mathrm{C}(37)$	171.6 (2)
$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{P}(2)$	176.95 (5)
$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{C}(37)$	87.0 (1)
$\mathrm{P}(2)-\mathrm{Pd}-\mathrm{C}(37)$	90.5 (1)
C(43)-S-C(44)	102.2 (4)
$\mathrm{Pd}-\mathrm{P}(1)-\mathrm{C}(1)$	113.0 (2)
$\mathrm{Pd}-\mathrm{P}(1)-\mathrm{C}(7)$	111.5 (2)
$\mathrm{Pd}-\mathrm{P}(1)-\mathrm{C}(13)$	118.7 (2)
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(7)$	107.7 (3)
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(13)$	102.1 (3)
$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{C}(13)$	102.8 (3)
$\mathbf{P d}-\mathbf{P}$ (2)-C(19)	114.4 (2)
$\mathrm{Pd}-\mathbf{P}(2)-\mathrm{C}(25)$	110.5 (2)
$\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(31)$	119.8 (2)
$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{C}(25)$	103.4 (3)
C(19)-P(2)-C(31)	102.7 (3)
$\mathrm{C}(25)-\mathrm{P}(2)-\mathrm{C}(31)$	104.5 (3)
$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	123.6 (5)
$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	117.7 (4)
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(36)$	116.6 (5)
$\mathrm{Pd}-\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	45.0 (5)
$\mathrm{Pd}-\mathrm{P}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	12.0 (6)
$\mathrm{Pd}-\mathrm{P}(\mathrm{I})-\mathrm{C}(13)-\mathrm{C}(14)$	79.0 (5)
$\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(19)-\mathrm{C}(20)$	164.8 (4)
$\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(19)-\mathrm{C}(24)$	-21.9 (5)
$\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(25)-\mathrm{C}(26)$	-52.0 (5)
$\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(31)-\mathrm{C}(36)$	-63.8 (5)
$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{C}(37)-\mathrm{C}(38)$	88.7 (4)
$\mathrm{P}(2)-\mathrm{Pd}-\mathrm{C}(37)-\mathrm{C}(38)$	-89.6 (4)

Fig. 1. PLUTO (EUCLID version: Spek, 1982) drawing of the title compound with adopted numbering scheme. Hydrogen atoms omitted for clarity.
$2.089 \AA$) that is observed for organometallic palladium compounds.

Short non-bonding distances between S and the phenyl ring [$\mathrm{C}(31)-\mathrm{C}(36)$] range from 3.80 to $4.12 \AA$ [sum of the van der Waals radii $3.68 \AA$ (Bondi, 1964)]. A short contact between a methylene H and the Pd atom is observed $[\mathrm{H}(432) \ldots \mathrm{Pd} 2 \cdot 66(3) ; \mathrm{C}(43) \cdots \mathrm{Pd}$
3.28 (7) \AA; C(43)-H(432) \cdots Pd 119 (3) ${ }^{\circ}$. Short intermolecular contacts include the interaction $\mathrm{H}(442) \cdots$ I $\left[1-x, \quad \frac{1}{2}+y, \quad \frac{1}{2}-z\right] \quad 2.90(1) ; ~ C(44) \cdots$ I 3.926 (8) \AA; C(44)-H(442)…I 158.8 (6) ${ }^{\circ}$.

A slight skeletal deformation of the benzene rings of the triphenylphosphine ligands in the title compound is observed. It may be described in terms of an average decrease of 2.3° from 120° of the endocyclic bond angle, opposite to the P atom. Domenicano, Vaciago \& Coulson (1975) explain this in terms of hybridization effects and valence-shell electron-pair repulsions.

The X-ray data were kindly collected by Dr A. J. M. Duisenberg. Part of this work (ALS) was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO).

References

Bondi, A. (1964). J. Chem. Phys. 68, 441-451.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A 24, 321-324.
Domenicano, A., Vaciago, A. \& Coulson, C. A. (1975). Acta Cryst. B31, 221-234.
Kobayashi, Y., Ittaka, Y., Yamazaki, H. (1972). Acta Cryst. B28, 899-906.
McCandlish, L. E., Stout, G. H. \& Andrews, L. C. (1975). Acta Cryst. A31, 245-249.
Negishi, E. (1978). Aspects of Mechanism in Organometallic Chemistry, edited by J. H. Brewster, pp. 283-316. New York: Plenum.
Olmstead, M. M., Farr, J. P. \& Balch, A. L. (1981). Inorg. Chim. Acta, 52, 47-53.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Spek, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. SAYre, p. 528. Oxford: Clarendon Press.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1987). C43, 463-465

Structure of $\{\mathbf{2 , 6}$-Bis[(dimethylamino)methyl]phenyl\}iodoplatinum(II)

By W. J. J. Smeets, A. L. Spek* and A. J. M. Duisenberg
Vakgroep Algemene Chemie, Afdeling Kristal- en Structuurchemie, University of Utrecht, Padualaan 8, 3508 TB Utrecht, The Netherlands

and J. A. M. van Beek and G. van Koten
Anorganisch Chemisch Laboratorium, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
(Received 2 October 1986; accepted 21 October 1986)

Abstract

PtI}\left(\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{2}\right)\right], M_{r}=513 \cdot 28\), monoclinic, $I 2 / a, a=17.044$ (6),$b=9.259$ (3), $c=18.44$ (1) $\AA \AA$, $\beta=96.65(4)^{\circ}, \quad V=2890(2) \AA^{3}, \quad Z=8, \quad D_{x}=$ $2.359 \mathrm{~g} \mathrm{~cm}^{-3}$, Мо $K \alpha, \lambda=0.71073 \AA, \mu=119.1 \mathrm{~cm}^{-1}$, $F(000)=1888, T=294 \mathrm{~K}, R=0.0301$ for 2635 observed reflections with $I>2 \sigma(I)$. Pt is square-planar (within $0.013 \AA$) coordinated by $\mathrm{C}(1), \mathrm{I}, \mathrm{N}(1)$ and $\mathrm{N}(2)$. The molecule has approximate twofold axial symmetry along the $\mathrm{Pt}-\mathrm{I}$ axis.

Introduction. Recently it appeared that the title compound $[=\operatorname{PtI}(\mathrm{NCN})]$ readily forms a very stable complex with I_{2} (van Beek, van Koten, Smeets \& Spek, 1986). The resulting $\operatorname{PtI}(\mathrm{NCN})\left(\eta^{1}-\mathrm{I}_{2}\right)$ compound is the first example of a complex mimicking the initial stage of the oxidative addition of halogens at d^{8} metal centres.

[^2]0108-2701/87/030463-03\$01.50
$\operatorname{PtI}(\mathrm{NCN})\left(\eta^{1}-\mathrm{I}_{2}\right)$ has a distorted square-pyramidal coordination with an end-on bonded I_{2} molecule occupying the apical position. Two of the NMe groups are located on the opposite side of the η^{1} bonded I_{2} molecule and seem to shield that side from further attack by I_{2}.
In order to study this aspect in more detail the structure of the parent compound $\operatorname{PtI}(\mathrm{NCN})$ was determined.

Experimental. Transparent yellow prismatic crystal $0.48 \times 0.29 \times 0.13 \mathrm{~mm}$ glued on top of a glass fibre. Enraf-Nonius CAD-4F diffractometer, Zr-filtered Mo $K \alpha$ radiation, cell constants from the angular settings of 12 reflections with $11.5<\theta<14.0^{\circ}$. Intensity data of 3512 unique reflections were collected within a quarter of the reflection sphere; $-21 \leq h \leq 22$, $0 \leq k \leq 12, \quad-23 \leq l \leq 0 ; \quad(\sin \theta / \lambda)_{\max }=0.649 \AA^{-1} ;$
(c) 1987 International Union of Crystallography

[^0]: * Author to whom correspondence should be addressed.

[^1]: \dagger Lists of structure factors, anisotropic thermal parameters, H -atom parameters, additional bond lengths and angles and an ORTEP plot have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43507 (37 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
 © 1987 International Union of Crystallography

[^2]: * Author to whom correspondence should be addressed.

